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Abstract 
This paper proposes to recognize an aircraft in satellite image using template matching for accurate 

detection and tracking. High resolution multispectral satellite images with multi-angular look capability have 

tremendous potential applications. Here the system involves an object tracking algorithm with three-step processing 

that includes moving object estimation, target modeling, and target matching. Potentially moving objects are first 

identified on the time-series images. The target is then modeled by extracting both spectral and spatial features. In 

the target matching procedure, template will be used as matching model to recognize with each frame by frame for 

accurate detection. Here, normalized cross correlation and spatial features are used as features model for 

recognition. This recognition model will be continued for all sequence of satellite images. Final simulated will be 

demonstrated the capability of object tracking using change detection algorithm in a complex environment with the 

help of high resolution multispectral satellite imagery. 
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Introduction 
Aircraft recognition is an important issue of 

target recognition in satellite images and has many 

important applications in practice such as airfield 

dynamic surveillance. As the resolution of satellite 

images gets higher, more abundant color, texture, and 

spatial information are provided. Such information 

offers good opportunity to recognize aircraft that has 

a very complex structure. However, automatic 

aircraft recognition is not a simple problem. Besides 

the complex structure, different aircraft differ in size, 

shape, and color, and even for one kind of aircraft, 

the texture and intensity are usually dissimilar in 

different scenarios. Moreover, recognition often 

suffers from various disturbances such as clutter, 

different contrasts, and intensity in homogeneity. 

Thus, the robustness and resistance to disturbance are 

highly required for the method. We illustrate some 

typical satellite aircraft images in Fig. 1 to show the 

difficulties. A lot of work have been done for aircraft 

recognition, such as moment invariant features [1], 

Fourier descriptor [2], and so on [3], [4]. These 

methods use shape features on either binary image or 

object contour and suppose that the object region or 

edges can be well obtained which is often difficult in 

practice.  

 

Fig. 1. Aircraft images and Canny edge detections with thresholds 60 and 150. 
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Fig: 2 proposed aircraft recognition framework 

Xu and Duan [5] apply an artificial bee colony 

algorithm with an edge potential function to the 

recognition task for low altitude aircraft, whereas in 

satellite images, object boundary is easily blurred and 

edges usually cannot be well extracted due to poor 

contrast as shown in Fig. 1. In [6], principal 

component analysis (PCA) is applied on the binary 

image obtained by segmentation with Otsu’s method 

[7] to estimate the main axis, and recognition is then 

achieved by template matching. Hsieh et al. [8] use a 

symmetry-based method to find the optimal axis 

direction after image binarization using minimum 

within-group variance dynamic threshold; then, four 

features are extracted and combined to recognize the 

object. Shape features are used in the recognition 

stage for both [6] and [8], while their segmentations 

are both only pixel based. Thus, the segmentations 

are easily affected by various disturbances, which, as 

a result, will affect the final recognition performance. 

The contribution of our work is threefold. First, 

unlike traditional methods, shape prior is integrated 

to segmentation process and utilized coarsely to 

finely in our recognition framework as shown in Fig. 

2. The similarity and difference of shapes for aircraft 

samples are respectively exploited in the coarse and 

fine stages. Second, pose is first approximately 

estimated before segmentation in the coarse stage, 

using a single template matching with a defined score 

criterion. The template is regarded as describing the 

similarity of shapes for aircraft, and the estimated 

pose result provides an initialization for the following 

segmentation. The refined pose information is 

integrated in our contour evolution process in the fine 

stage and obtained when the segmentation is done. 

Third, we model shapes globally with PCA and 

kernel density function that have good effects on both 

dimension reduction and sample space description, 

and a new energy function is proposed to embed the 

shape model to segmentation using a level set 

method. The final obtained model coefficients in 

segmentation are directly used to recognize the type. 

Experiments on Quick Bird images show that our 

method is more robust with respect to various 

disturbances compared with other methods. 

 

Materials and methods 
Coarse  Stage : Pose Estimation 

Pose estimation is essential in aircraft 

recognition and is usually done after segmentation in 

conventional methods [6], [8]. In our method, shape 

is integrated in the segmentation with a parametric 

model, so the refined pose information is contained 

while segmenting, and will be obtained when the 

segmentation is accomplished. On the other hand, the 

integrated shape model needs an initial pose. Due to 

the special complex structure of aircraft, 

segmentation with a random pose initialization easily 

runs into local minimum. Thus, in this stage, we 

roughly estimate the pose information, which 

coarsely addresses the problem of translation, 

rotation, and scaling. Considering the common cross 

structure of aircraft, we adopt the method of coarse 

template matching with the average shape of test 

aircraft. 

A. Preprocessing 

Template matching is usually edge based or 

region based. In our method, edge information is 

used. As mentioned before, edge extraction often 

suffers from image blurring and poor contrast. 

However, the edges obtained still preserve structure 

information for aircraft to some extent. In addition, 

aircraft is usually on parking aprons, most of which 

are often flat and smooth, so edges are mostly 
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produced by the contrast between object and 

background. On the contrary, color feature is not 

steady. Intensity in homogeneity on aircraft often 

occurs due to illumination, and sometimes, the 

intensities of pixels on aircraft look even the same as 

background. The preprocessing step aims to extract 

the edge information. Considering the existence of 

various contrasts for optical satellite images, we use 

Sobel operator to calculate the gradient magnitude 

instead of traditional edge detectors, e.g., Canny for 

which fixed thresholds are needed. In detail, we first 

apply Sobel operator on the input image; then, Otsu’s 

method is used on the output from Sobel operator to 

calculate a global adaptive threshold to remove low 

magnitudes, most of which are produced within 

background. The resultant gradient image is used as 

the input of the template matching. 

B. Pose Estimation 

Aircraft have the common feature of cross 

structure. To roughly estimate the pose of an aircraft, 

this common structure can be adopted. In our pose 

estimation, the binary shape template of test aircraft 

is used to match the preprocessed gradient image 

coarsely on translation r, rotation θ, and scaling s 

with the following defined score criterion: 

Score(r, θ, s) = ∑x            I(x) 

                                (D(x, T(r, θ, s)) + 1) * sξ (1) 

Where I(x) denote the value of the preprocessed 

image, 

T(r, θ, s) represents the template with translation, 

rotation, and scaling, and D(x, T(r, θ, s)) is the 

distance from pixel x to the template which can be 

obtained by distance transformation. ξ is a constant, 

and sξ is a scaling regular term of Score. This 

equation gives the score criterion, which is very 

important factor for rough estimation .By using the 

above equation we can find binary shape template of 

test aircraft to match the preprocessed gradient image 

on translation. The average template is obtained by 

using this equation.  

 
Fig: 3. Process of making average template. (a) Aligned test shapes. (b) SDFs.(c) The average SDF. (d) Binarization of the 

average SDF. 

 

Fig. 3 shows how to get this average 

template. The aligned test aircraft shapes are first 

represented by signed distance functions (SDFs), and 

then, the average SDF is calculated. This is also one 

of the steps in shape modeling process introduced in 

the next section. The template is obtained by 

binarization of this average SDF. It is noticed that the 

template is solid. There are two reasons we do not 

use edge template. First, we align aircraft shapes 

through region correlation introduced in the shape 

modeling, so this solid template represents the 

common feature of aircraft. Second, in the  

 

experiments, we find that solid template works better 

for the large difference of wings of various aircraft. 

Since the distance D(x, T(r, θ, s)) becomes smaller 

when the scaling s is larger or the size of this solid 

template is bigger, the regular term sξ is introduced in 

the denominator in (1). In addition, in our 

experiments, we get the best result when ξ is set to 

1.1. 

 

Fine Stage: Segmentation And Recognition  

In the fine stage, shapes of aircraft are globally 

modeled with a parametric representation and kernel 
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density estimation. This model is then integrated into 

the popular energy-based level set method which is 

convenient to combine various priors. Curve 

evolution is driven by the image region-based energy 

and simultaneously regulated by the shape model. 

The last obtained coefficients of shape model are 

directly used in the recognition. 

A. Shape Modeling 

A lot of methods have been developed to 

model a class of objects, e.g., [9]–[11]. We choose 

PCA method here due to its efficiency and good 

effect on dimension reduction. First, shape templates 

in the training set are aligned with method in [10]; 

then, the boundary is embedded as the zero level of 

an SDF.PCA is applied to these SDFs to get the mean 

shape φ0 and K eigenvectors φk called eigen shapes. 

Then, a shape can be parametrically represented as 

   Kφ(y) =φ0(T · y) +∑ wkφk(T · y) 

 k=1  

       

K  = ∑ wkφk (T · y), with w0 = 1                       (2) 

           k=0 

Where W= {w1, . . . , wk, . . .} denotes the weights of 

eigen shapes and T is the transformation matrix that 

includes translation, scaling, and rotation 

 

 
In practice, the M (M <K) largest eigen shapes 

measured by the corresponding eigen values are used 

to reconstruct the shape. In addition, the average 

reconstruction accuracy is the sum of the M largest 

eigen values divided by the sum of all the eigen 

values .It is noticed that, in the aforementioned linear 

representation, a uniform distribution is actually 

assumed for the coefficients W or for the shapes in 

the PCA subspace. However, the types of aircraft are 

finite in practice. To better capture the shape 

distribution, a kernel density function for W is 

introduced here  

Where, Wi represents the PCA coefficients of 

samples and N is the number of samples. Like [11], 

we set σ2 to be the mean squared nearest neighbor 

distance. 

B. Shape-Based Segmentation 

Proposed by Osher and Sethian [12], level set 

method has become a very popular framework for 

segmentation [13]–[15].Compared with other 

methods such as graph cut, it is more convenient to 

combine with shape prior. The basic idea of level set 

is the evolution of contour driven by some energy 

terms. In our method, a new energy function  

integrating a shape prior is proposed to guide the 

segmentation. 

The first term of E is a region-scalable fitting (RSF) 

term [16], and the second is the kernel density 

function introduced earlier. In addition, α is the 

weight for these two terms which is positive. In the 

first term, integrals over y and x are both taken on the 

image domain; Kτ is a Gaussian kernel with scale 

parameter τ ;I(y) denotes the image intensity at point 

y; f1(x) and f2(x) are two values that approximate 

local intensities of images 

 
Where,  M1(φ) = H(φ), M2(φ) = 1 − H(φ), and H is 

the Heaviside function approximated smoothly with a 

constant ε as follows: 

  

RSF is a region-based level set method proposed by 

Li et al. [16]. Compared with traditional piecewise 

constant method [17], it has good tolerance to 

intensity in homogeneity which often occurs in 

satellite images. It is noticed that, in (6), φ is not 

random at the beginning. It is the PCA representation 

in (2) with initial PCA coefficients W usually set to 

zero and initial pose coefficients T obtained from the 

coarse stage. Thus, the contour evolution is updating 

of the shape parameters W and pose parameters T. 

Since the energy in (6) is parametrically represented 

with W and T, its minimization can be easily 

achieved by the gradient descent approach. The 

gradients of E, taken with respect to W and T, are 

given by the following equations: 
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where, 

 
The shape parameter W and pose parameters T are 

then updated in iteration by  

 
Where, Δtwi and ΔtTi are positive step-size 

parameters. 

C. Aircraft Recognition 

After segmentation, the last obtained PCA 

coefficients are directly used in the recognition 

process. Since the resolution of satellite image is 

known, it is easy to calculate the size of aircraft from 

the final W and T. Considering that there is no 

obvious relation between aircraft size and PCA 

coefficients, we adopt a two-step k-nearest neighbor 

(KNN) recognition method. First, we select K types 

from the training set, the sizes of which are most 

close to the test sample. We define the closeness of 

size as follows:    

 

where l and w are the calculated length and width, 

respectively, and L and W correspond to the training 

samples. The closeness may be negative when the 

difference of size is too big. However, this has no 

influence since bigger clo means that sizes are closer. 

Second, among the K candidates, we verify the type 

of aircraft as the closest one by measuring the L2 

distance of PCA coefficients. 

 
Fig: 4 Shape modeling. (a) Shape alignment. (b) Average 

shape template. 

 

Results and discussion 
In our experiments, due to the lack of standard 

data sets of high-resolution satellite images for 

aircraft recognition, 300 gray images, 30 per type, 

including ten kinds of airplanes, are collected from 

Quick Bird with the resolution of 0.61 m to evaluate 

the proposed method. The engines of most of the 

aircraft are removed since they are small structures 

and have little common features. In our shape 

modeling, first, we align all the templates with the 

region correlation method in [10]. Then, PCA is done 

for the SDF representations. We take four eigen 

shapes to parametrically represent the shape of the 

aircraft, and the average reconstruction accuracy is 

96.31%. The aligned shapes and the average shape 

template used in (1) are shown in Fig. 4. 

A. Pose Estimation 

In the pose estimation, since the center of aircraft 

is usually 

located near to the middle of the image in practice, 

we restrict our search region for translation r in (1) 

just around the middle, which is a 50 × 50 square 

considering the resolution of image and the sizes of 

samples. The steps of translation r, rotation θ, and 

scaling s are set to 5 pixels, 15◦, and 0.2, respectively. 

The length and width of template that we used are 48 

and 46 m, respectively, and the scaling s ranges from 

0.6 to 1.4. Fig. 6  
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Fig. 5. Pose estimation. (a) Test image. (b) Sobel image. (c) Threshold with Otsu’s method. (d) Pose estimation 

result. 

TABLE I 

PRECISION ON POSE ESTIMATION OF DIFFERENT METHODS 

 
 

 
Fig. 6. Curve evolutions in segmentation. 

shows some matching results. From these images, we 

can see that, although there exist different contrasts 

and background disturbances, the structure of aircraft 

is still kept in the preprocessed gradient image, and 

the Score in (1) would get the maximum at the 

desired pose. Thus, the average template can well 

coarsely estimate the pose information. We compare 

our method with those in [6] and [8]. Since they only 

settle the problem of estimating main axis of aircraft 

and the requirements of accuracy are not exactly the 

same, we suppose that a correct pose is gotten when 

estimated axis direction is within an error of 15◦. 

Table II lists the accuracies of these methods. Our 

method obtains much better performance than the 

other two methods. It is mainly because that their 

pixelbased segmentations before pose estimation are 

easily affected by various disturbances in practice, 

which, as a result, affects the accuracy of PCA and 

symmetric analysis in pose estimation. 

B. Shape-Based Segmentation 

We apply the proposed energy function to 

segmentation. The parameters are chosen empirically. 

The scale τ of Gaussian kernel is set to three. The ε in 

Heaviside function is set to five. We set α = 1× 104 

in (6). The step-size parameters of W in (16) are set 

to 2.0, 1.2, 0.8, and 0.6, respectively, and those of a, 

b, h, and θ are set to 3 × 10−4, 3 × 10−4, 1 × 10−8, 

and 2 × 10−8, respectively. We fix the number of 

iteration to 200 to stop the minimization process. Fig. 

7 shows some examples of contour evolution. We can 

see that, with the integration of the shape prior, the 

contours of segmentation always look regular and 
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good results are obtained at last. In segmentation, to 

illustrate the effect of our pose estimation, we 

compare our method with the segmentation using a 

random initialization. Fig. 8 shows some 

comparisons. It can be seen that segmentation using a 

random initialization easily runs into a local 

minimum, while with our pose estimation, this 

problem can be better avoided. We also compare our 

method with Otsu’s method and RSF that is the first 

energy term in (6) without shape prior. 

 
Fig. 7. Comparison of segmentation with different initializations. (Top row) With our pose estimation. (Bottom row) With a 

random initialization. 

 
Fig. 8. Comparison of segmentation. (a) Otsu’s method. (b) Initialization of RSF. (c) Result of RSF. (d) Our pose estimation. 

(e) Our segmentation. 

Table II 

precision on recognition of different methods 

Fig. 9 shows some results. In the first row, parts of 

the airplane’s wing and empennage have poor 

contrast with background; in the middle row, many 

pixels of the target have intensities similar with that 

of the with that of the background; and in the third 

row, there exist so many background disturbances. 

From these examples, it can be seen that methods 

using only image appearance information are not 

capable of separating target from background and are 

easily affected by bad image quality and background 

disturbances. Besides these, their results are often so 

irregular which makes the following recognitions 

difficult. On the contrary, since we model shapes of 

aircraft globally as well as restrict the solution in the 

PCA linear space, the result is more regular and more 

robust with respect to various disturbances. 

C. Recognition Results 

In recognition, considering the number of aircraft 

samples used in our experiment, we set K to three in 

the first KNN stage. The length and width of the 

object are calculated with the obtained parameters W 

and T. Table III shows the recognition accuracies of 

our method and the other two methods. Due to the 

better performance of pose estimation and 
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segmentation of our method, we get better 

recognition accuracy than the other two approaches. 

From the accuracies of pose estimation and 

recognition, it can also be seen that template 

matching [6] for recognition is very accurate when 

pose is rightly estimated or segmentation is well done 

in other words. However, it has no dimension 

reduction, so that it is not scalable when the number 

of aircraft increases. Experimental results show the 

advantage of our shape-model-based recognition 

method. 

 
Fig 9.Screenshot of the output 

 

Conclusion 
In this letter, we have proposed a coarse-to-fine 

aircraft recognition method. The similarity and 

difference of shapes for aircraft are explored in the 

coarse and fine stages, respectively. A single 

template with a defined score is adopted to estimate 

the pose roughly in the coarse stage. In the fine stage, 

PCA and kernel density function are used to model 

shapes to get good effects on dimension reduction 

and sample space description. A new energy function 

is proposed to embed the shape model to 

segmentation. In addition, the obtained size and PCA 

coefficients are used directly to recognition. 

Experiments show that our proposed method is robust 

with respect to various disturbances. 
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